Antarctic meteorites help in the study of early solar system
Field researchers in Antarctica have returned with more than 17,500 meteorites over the 30-plus years that the extraterrestrial material has been collected from the frozen continent.
Yet meteorite science is still in its infancy, and the collected rocks still hold plenty of surprises that could shape our understanding of the solar system, according to scientists involved in the search and characterization of the Antarctic meteorite collection.
A paper in the journal Nature earlier this year illustrates his point. Scientists who analyzed two meteorites collected by Harvey’s team during the 2006-07 field seasons in an area called the Graves Nunatak ice field reported that the rocks are unlike anything found before. The composition of the light-colored rocks has similarities to the Earth’s crust, which has implications for how some asteroids form and evolve.
Additional work by scientists in the community may involve isotopic analysis to help “fingerprint” the sample to determine its origin. For example, scientists can identify rare Martian rocks by analyzing the nitrogen and noble gases found in glass pockets in the rocks created by impacts. That information is matched against the data collected by NASA’s Viking program about Mars’ atmosphere.
All those rocks, ranging in size from smaller than a marble to larger than a football, are bagged and boxed in Antarctica in their frozen state for shipment back to the United States.Additional work by scientists in the community may involve isotopic analysis to help “fingerprint” the sample to determine its origin. For example, scientists can identify rare Martian rocks by analyzing the nitrogen and noble gases found in glass pockets in the rocks created by impacts. That information is matched against the data collected by NASA’s Viking program about Mars’ atmosphere.
Yet meteorite science is still in its infancy, and the collected rocks still hold plenty of surprises that could shape our understanding of the solar system, according to scientists involved in the search and characterization of the Antarctic meteorite collection.
A paper in the journal Nature earlier this year illustrates his point. Scientists who analyzed two meteorites collected by Harvey’s team during the 2006-07 field seasons in an area called the Graves Nunatak ice field reported that the rocks are unlike anything found before. The composition of the light-colored rocks has similarities to the Earth’s crust, which has implications for how some asteroids form and evolve.
Additional work by scientists in the community may involve isotopic analysis to help “fingerprint” the sample to determine its origin. For example, scientists can identify rare Martian rocks by analyzing the nitrogen and noble gases found in glass pockets in the rocks created by impacts. That information is matched against the data collected by NASA’s Viking program about Mars’ atmosphere.
All those rocks, ranging in size from smaller than a marble to larger than a football, are bagged and boxed in Antarctica in their frozen state for shipment back to the United States.Additional work by scientists in the community may involve isotopic analysis to help “fingerprint” the sample to determine its origin. For example, scientists can identify rare Martian rocks by analyzing the nitrogen and noble gases found in glass pockets in the rocks created by impacts. That information is matched against the data collected by NASA’s Viking program about Mars’ atmosphere.
0 Comments:
Post a Comment
<< Home